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Abstract: We generalize the description of baryons as instantons of Sakai-Sugimoto model

to the case where the flavor branes are non-anti-podal. The later corresponds to quarks

with a “string endpoint mass”. We show that the baryon vertex is located on the flavor

branes and hence the generalized baryons also associate with instantons. We calculate the

baryon mass spectra, the isoscalar and axial mean square radii, the isoscalar and isovector

magnetic moments and the axial coupling as a function of the mass scale MKK and the

location ζ of the tip of U-shaped flavor D8-branes. We determine the values of MKK and

ζ from a best fit comparison with the experimental data. The later comes out to be in a

forbidden region, which may indicate that the incorporation of baryons in Sakai-Sugimoto

model has to be modified. We discuss the analogous baryons in a non-critical gravity

model. A brief comment on the single flavor case (Nf = 1) is also made.
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1. Introduction

Baryons were incorporated into the AdS5×S5 model in [1, 2] via a D5-brane wrapping the

S5 with Nc strings attached to it and ending up at the boundary. The strings are needed

to cancel an Nc charge in the world-volume of the wrapped brane that follows from the RR

flux of the background. This object which is the dual of an external baryon, namely with

infinitely heavy quarks was further discussed in [3 – 5] and was generalized also to confining

backgrounds [6] where it was found that their energy was linear in Nc and in the “size” of

the baryon on the boundary.

A realization of a dynamical baryon has become possible once flavor probe branes

were added to holographic models. A prototype of such a model is Sakai-Sugimoto (SS)

model [7]. This model is based on placing a stack of Nf probe D8-branes and a stack

of Nf probe anti-D8-branes connected in a U-shaped cigar profile, into the model of [8]

of near extremal D4-branes. The baryon vertex is immersed in the probe brane at the
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Figure 1: The probe D8-branes in the cigar background.

tip of the cigar. In [9] it was shown that the baryon corresponds to an instanton of the

five-dimensional effective U(Nf = 2) gauge theory. The physical properties of this baryon

were analyzed in several papers [10 – 25].1 These include in particular the mass, size,

mass splitting, the mean square radii, magnetic moments, various couplings and more. A

comparison with experimental data reveals an agreement similar, or even better, than the

one found in the Skyrme model [28]. In spite of this success the baryons of the model

of [9] suffer from several problems. The size of the baryon is proportional to λ−1/2 where

λ is the four-dimensional ’t Hooft parameter. Since the gravitational holographic model is

valid only in the large λ limit, this implies that stringy corrections have to be taken into

account. Another drawback of the model is that the scale of the system associated with

the baryonic structure is roughly half the one needed to fit to the mesonic data.2

SS model has a generalization [30], where the location of the probe branes in the

compactified direction is not anti-podal, or differently stating the tip of the probe brane

is at a radial location u0 > uKK where uKK is the minimal value of the radial direction

of the background. The difference between the two cases is drawn in figure 1. The non-

anti-podal case is in fact a family of models characterized by the separation distance L

or a “string endpoint mass” of the quark [31].3 A natural question to ask is how do the

properties of the baryon depend on the additional parameter and in particular whether the

problems mentioned above in the context of the anti-podal case can be circumvented. This

is the main goal of this paper. As a first step we address the question of where the baryon

vertex is located in the generalized setup. We show that in the confining phase it is again

immersed in the probe brane. In the deconfining phase above a certain critical temperature,

the baryon vertex falls into the “black hole” and thus the baryon is dissolved. The main

part of this paper includes a repetition of the calculations performed in [9, 37] of the

properties of the baryons now made in the generalized setup with non-trivial stringy mass

namely a non-anti-podal configuration. The expressions for the mass spectra, mean radii,

magnetic moments and couplings are derived as a function of the scale and the parameter

1The different approach for the baryons in SS model has been studied by [26, 27].
2Ref. [29] has shown that this problem is substantially improved in the AdS/QCD model.
3For attempts to introduce the QCD or current algebra mass, see [32 – 36].
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which measures the deviation from the anti-podal configuration. It has turned out that the

generalized setup does not resolve the problem of the size of the baryon. We have found

that the data can be fit with the same scale that governs the mesonic spectra provided the

location of the probe brane is in an unphysical location “below the tip of the cigar”. It

seems to us that this is an indication of a problem of the baryonic setup of SS model.

We also analyze the baryons of the non-critical model [38] based on the incorporation

of Nf probe D4-branes into the background of a near extremal D4-branes residing in six

dimensions. It is shown that the problem of the small size of the baryon is avoided in this

model. We also setup the stage for the open problem of the baryons of a single flavor brane

namely Nf = 1.

The paper is organized as follows. After this introduction we describe the general setup

of the non-anti-podal SS model. In section 3 we analyze the baryonic configuration in the

generalized setup and determine that the location of the baryon vertex is on the flavor

brane. Section 4 is devoted to a detailed analysis of the baryon properties following [9, 37]

in the non-anti-podal geometry. The values of the scale and the location of the flavor brane

that fit the data in an optimal way are determined. We then present the open question

of the baryon for a single flavor case. Section 6 presents an analysis similar to the one in

section 4 but in the context of a non-critical six-dimensional model. We end with a short

summary, list of conclusions and open questions. Appendix includes the computations of

the location of the baryon vertex in the general case of Dp-brane background with D(8−p)-
branes wrapping an S8−p cycle.

2. The general setup of the non-anti-podal Sakai-Sugimoto model

SS model [7] is a system which consists of Nc coincident color D4-branes and Nf coincident

flavor D8-branes. WhenNc is large, the D4-branes are regarded as the background, of which

metric is given by

ds2 =

(

u

R

)
3
2
[

ηµνdx
µdxν + f(u)dx2

4

]

+

(

R

u

)
3
2
[

du2

f(u)
+ u2dΩ2

4

]

,

eφ = gs

(

u

R

)
3
4

, F(4) =
2πNc

V4
ǫ4 , R3 := πgsNcl

3
s , f(u) := 1 −

(

uKK

u

)3

, (2.1)

where ηµν = diag(−1, 1, 1, 1). The volume of unit four sphere V4 is equal to 8π2/3. The x4

direction is compactified by the circle with the period

δx4 =
4πR

3
2

3u
1
2
KK

. (2.2)

This period is determined so that the singularity at the tip u = uKK is excluded. Then the

Kaluza-Klein mass scale MKK becomes

MKK :=
2π

δx4
=

3u
1
2
KK

2R
3
2

. (2.3)
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The flavor D8-branes are realized as the probe in the D4-branes’ background (2.1).

The action of the coincident D8-branes consists of the two parts,

SD8 = SDBI + SCS . (2.4)

SDBI is the Dirac-Born-Infeld (DBI) action,

SDBI = T8

∫

d9x e−φ
√

− det(gMN + 2πα′FMN ) , (2.5)

where the D8-brane’s tension is denoted by T8 = (2π)−8l−9
s . The induced metric gMN is

computed from (2.1),

ds2D8 =

(

u

R

)
3
2

ηµνdx
µdxν +

[

(

u

R

)
3
2

f(u) +

(

R

u

)
3
2 u′2

f(u)

]

dx2
4 +

(

R

u

)
3
2

u2dΩ2
4 , (2.6)

where u′ denotes du/dx4. F is a U(Nf ) gauge field strength on the worldvolume of the

D8-branes. The U(Nf ) gauge field A has also Chern-Simon action SCS,

SCS =
Nc

24π2

∫

tr

(

AF2 − i

2
A3F − 1

10
A5

)

. (2.7)

where the integral is now a five-dimensional one.

We shall study the shape of the D8-branes by the analyses of the classical solution

of (2.4) without the gauge fields. In terms of (2.6), the DBI action (2.5) is written down

SDBI =
T8Ω4

gs

∫

d4xdx4 u
4

√

f(u) +

(

R

u

)3 u′2

f(u)
=: S0[u(x4)] . (2.8)

Since the Hamiltonian calculated from this action is the function of only u, we can put the

Hamiltonian constraint,

u4f(u)
√

f(u) +
(

R
u

)3 u′2

f(u)

= constant = u4
0

√

f(u0) , (2.9)

where we used u(0) = u0 and u′(0) = 0. Note that u0 ≥ uKK. The Hamiltonian constraint

is rewritten as

du

dx4
= ±

(

u

R

)
3
2

f(u)

√

u8f(u)

u8
0f(u0)

− 1 . (2.10)

The solution of this equation implies that the D8-branes are U-shape in the cigar geometry

expanded by the (u, x4) coordinates (see also figure 1). The boundary value x4(u = ∞) :=

L/2 is evaluated from (2.10)

L =

∫ L/2

−L/2
dx4 = 2

∫ ∞

u0

du

|u′| = 2

∫ ∞

u0

(

R

u

)
3
2 1

f(u)
√

u8f(u)
u8
0f(u0)

− 1
du . (2.11)

L denotes the separation along the x4 direction between the D8-branes at u = ∞. The

equation (2.11) relates the parameter u0 at the IR (u = u0) with L at the UV (u = ∞).

When u0 is equal to uKK, in other words, L = δx4/2, the D8-branes are located at the

anti-podal positions on the circular x4 direction. This anti-podal case is the original SS

model [7, 39].
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3. The baryon configuration in the genralized Sakai-Sugimoto model

The external baryon of the model of [1] was explored in [6]. It is composed from a baryon

vertex which is a D4-brane wrapped on S4 and Nc fundamental strings stretched between

this D4-brane and the boundary. A dynamical baryon in the model of [7] differs from the

external one in that the strings end on the probe flavor D8-branes and not on the boundary.

The leading order action, which is the sum of the action of the D4-brane and the action of

the Nc strings, takes the form

S = −T4

∫

dtdΩ4e
−φ
√

− det gD4 −NcTf

∫

dtdu
√

− det gstring =: −
∫

dtE .

where E is the energy density and

T4 = (2π)−4l−5
s , Tf = (2π)−1l−2

s .

In a similar way one can consider the baryonic D(8− p)-brane wrapped on the (8− p)-
dimensional sphere in the Nc Dp-branes’ background. This baryonic D-brane is regarded

as the baryon vertex in the p-dimensional QCD-like theory. This analysis is presented in

appendix A.

The idea now is to find the location of the baryon vertex from the requirement of

minimizing the energy. The energy as a function of the location of the baryon vertex will be

calculated for the two distinct systems of the confining background and the deconfining one.

3.1 Confinement phase

The confining background is given by (2.1). Substituting this into the expression of the

energy, we find

E(uB ;u0) =
Nc

2πl2s

[

1

3
uB +

∫ u0

uB

du
1

√

f(u)

]

=:
NcuKK

2πl2s
Econf(x;x0) ,

Econf(x;x0) =
1

3
x+

∫ x0

x

dy
√

1 − y−3
,

where x := uB/uKK and x0 := u0/uKK , the valid range of x is 1 ≤ x ≤ x0 (see figure 2).

Since Econf(x;x0) is a monotonically decreasing function of x, the energy E becomes mini-

mum at x = x0.

The meaning of this result is that like the anti-podal case also for the generalized case

where x0(= u0/uKK) 6= 1 the baryon vertex is immersed inside the flavor probe branes. As

was mentioned this is only a leading order calculation. It can be improved by adding the

energy associated with the deformation of the wrapped brane due to the strings [40], and

by relaxing the assumption that the strings stretch only along the radial direction. We

believe that these improvements would not change the conclusion that the baryon vertex

is located on the probe branes.

– 5 –
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Figure 2: The baryon vertex in the confinement phase.

3.2 Deconfinement phase

Next we study the location of the baryon vertex in the deconfining phase. The difference in

the background metric is that now the thermal factor is dressing the compactified Euclidean

time direction, and we replace the scale with the one related to the temperature uT . Since

the background metric in this phase reads

ds2 =

(

u

R

)
3
2
[

fT (u)dt2 + δijdx
idxj + dx2

4

]

+

(

R

u

)
3
2
[

du2

fT (u)
+ u2dΩ2

4

]

,

fT (u) := 1 −
(

uT

u

)3

,

the corresponding energy can be evaluated

E(uB ;u0) =
Nc

2πl2s

[

1

3
uB

√

fT (uB) + (u0 − uB)

]

=:
NcuT

2πl2s
Edeconf (x;x0) ,

Edeconf (x;x0) =
1

3
x

√

1 − 1

x3
+ (x0 − x) ,

where x := uB/uT , x0 := u0/uT and 1 ≤ x ≤ x0. The energy (figure 3) has a maximum at

x =

(

5 + 3
√

3

8

)
1
3

=: xmax .

xmax is approximately equal to 1.08422. We are also interested in the critical value xcr

which satisfies

E(1;x0) = E(xcr;x0) .

xcr can be analitically calculated,

xcr =
5 +

√
33

8
≈ 1.34307 . (3.1)

If x0 > xcr, then the energy becomes minimum at x = x0 and the baryon vertex can

exist at the tip of the U-shaped flavor D8-brane (figure 4(a)). On the other hand, if

– 6 –
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Nf D8-branes

baryon vertex

open strings

(a) (b)

Figure 4: The baryon vertex in the deconfinement phase.

x0 < xcr, then the energy becomes minimum at x = 1, that is to say, the baryon vertex

falls down into the black hole (figure 4(b)). The physical meaning of the picture is that

for temperatures lower than a critical temperature, which is higher than the temperature

of the confinement/deconfinement phase transition, the baryon vertex will be in the flavor

brane just as in the zero temperature case. However, for higher temperature the baryon is

dissolved via falling into the black hole and becoming Nc deconfined quarks.

4. Baryons as instantons in non-anti-podal Sakai-Sugimoto model

Once we found that the baryon vertex is immersed inside the probe flavor branes, to extract

the properties of the baryons we have to repeat the computations done in [9, 37] in the

setup descibed in section 2 rather than in the anti-podal geometry.

We turn on the U(Nf ) gauge fields as the perturbation around the classical solution

A = 0 discussed in section 2. The DBI action (2.5) is expanded with respect to the

– 7 –
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gauge field,

SDBI = S0 + SYM + O(F3) .

In a similar way to the anti-podal case it is convenient to introduce a new coordinate z

defined by4

u = uKK(ζ3 + ζz2)
1
3 , ζ =

u0

uKK
. (4.1)

z and ζ are dimensionless. ζ takes a value in [1,∞) because of u0 ≥ uKK, while z takes

a value in (−∞,∞). Though (2.10) implies that x4(u) is a double-valued function, the

z coordinate makes it single-valued. The Yang-Mills part SYM is calculated in terms

of (2.6) and (4.1),

SYM = −κ
∫

d4xdz Tr

[

1

2
h(z; ζ)F2

µν +M2
KKk(z; ζ)F2

µz

]

, (4.2)

where

h(z; ζ) =

√

ζ2z2(ζ3 + ζz2)

(ζ3 + ζz2)
8
3 − (ζ3 + ζz2)

5
3 − ζ8 + ζ5

,

k(z; ζ) = (ζ3 + ζz2)
1
6

√

(ζ3 + ζz2)
8
3 − (ζ3 + ζz2)

5
3 − ζ8 + ζ5

ζ2z2

and κ := λNc/(216π
3). λ is t’Hooft coupling, λ := g2

YMNc. It is easy to check that for

ζ = 1 the anti-podal case is reproduced, namely, h(z) = (1 + z2)−1/3 and k(z) = 1 + z2.

From now on, we use the MKK = 1 unit. When necessary later, we shall be able to

easily recover the factor MKK. For the later convenience, we rescale the coordinate z and

the field Az,

z̃ :=

√

h0

k0
z , Az̃ :=

√

k0

h0
Az . (4.3)

h0 and k0 are defined through the expansions h(z; ζ) = h0(ζ) + O(z2) and k(z; ζ) =

k0(ζ) + O(z2) respectively,

h0 = ζ

√

3

8ζ3 − 5
, k0 = ζ

√

8ζ3 − 5

3
. (4.4)

It is clear from these expressions that there is a critical value of ζ, that is ζcr = (5/8)1/3(<

1), such that necessarily ζ > ζcr. Recall however that by its definition ζ ≥ 1. We will come

back to this point at the end of this section.

The action (4.2) is rewritten as

SYM = −κ̃(ζ)

∫

d4xdz̃Tr

[

1

2
h̃(z̃; ζ)F2

µν + k̃(z̃; ζ)F2
µz̃

]

, (4.5)

4The ζ parameter is a measure of the “string endpoint mass” of the quark. The latter is defined as

m
s
q =

1

2πα′

Z u0

uKK

du
√
g00guu .

This quantity is neither the QCD mass nor the constituent mass of the quark. In a crude way a non-spinning

meson has a mass of the form M = TstL+ 2ms
q (for equal endpoints).

– 8 –
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where h̃(z̃; ζ) and k̃(z̃; ζ) are defined in terms of (4.3) and (4.4) by

h̃(z̃; ζ) :=
h(z; ζ)

h0(ζ)
, k̃(z̃; ζ) :=

k(z; ζ)

k0(ζ)
, κ̃(ζ) := κ

√

h0(ζ)k0(ζ) = κζ . (4.6)

Since h̃(0; ζ) = k̃(0; ζ) = 1, h̃(z̃, ζ) and k̃(z̃, ζ) can be expanded with respect to z̃ as

h̃(z̃; ζ) = 1 +

∞
∑

n=1

h̃n(ζ)z̃2n , k̃(z̃; ζ) = 1 +

∞
∑

n=1

k̃n(ζ)z̃2n . (4.7)

For example, h̃1(ζ) and k̃1(ζ) are evaluated

h̃1(ζ) =
2ζ3 − 5

9ζ2
, k̃1(ζ) =

14ζ3 − 5

9ζ2
. (4.8)

We shall concentrate on the simplest non-ablelian Nf = 2 case. With the final goal of

comparing the theoretical results to the experimental data of baryons, it makes sense to

choose this case, since the up and down quarks have almost the same mass and are much

lighter than a strange quark. The U(2) gauge field is decomposed,

A = A+
1

√

2Nf

Â = A+
1

2
Â , (4.9)

where A and Â denote the SU(2) and U(1) gauge fields respectively. The Chern-Simon

action (2.7) with the rescaling (4.3) is written down as

SCS =
27πκ

8λ
ǫα1α2α3α4α5

∫

d4xdz̃

[

Âα1tr(Fα2α3Fα4α5) +
1

6
Âα1F̂α2α3F̂α4α5

]

(4.10)

up to total derivatives. The indices αi are 0, 1, 2, 3, z̃ and ǫ0123z̃ = 1.

The action of the gauge fields considered in this paper is constructed from (4.5)

and (4.10),

Sgauge = SYM + SCS . (4.11)

This action leads to the following equations of motion for the gauge fields:

h̃(z̃)DνF
µν +Dz̃

(

k̃(z̃)Fµz̃
)

=
27πκ

8λκ̃
ǫµα1α2α3α4F̂α1α2Fα3α4 , (4.12a)

k̃(z̃)DµF
z̃µ =

27πκ

8λκ̃
ǫz̃µ1µ2µ3µ4F̂µ1µ2Fµ3µ4 , (4.12b)

h̃(z̃)∂ν F̂
µν + ∂z̃

(

k̃(z̃)F̂µz̃
)

=
27πκ

8λκ̃
ǫµα1α2α3α4

[

tr(Fα1α2Fα3α4) +
1

2
F̂α1α2F̂α3α4

]

, (4.12c)

k̃(z̃)∂µF̂
z̃µ =

27πκ

8λκ̃
ǫz̃µ1µ2µ3µ4

[

tr(Fµ1µ2Fµ3µ4) +
1

2
F̂µ1µ2F̂µ3µ4

]

, (4.12d)

where µi, ν are 0, 1, 2, 3.

– 9 –
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4.1 Baryon as instanton

Following [9], we now introduce the rescaling of the coordinates and the fields,

x0 = x0
(r) , xi =

1√
λ
xi

(r) , z̃ =
1√
λ
z̃(r) , (4.13)

A0 = A(r)0 , Ai =
√
λA(r)i , Az̃ =

√
λA(r)z̃ ,

where i = 1, 2, 3, and consider the expansion with respect to large λ. Under this expansion,

we can approximate h̃(z̃(r)/
√
λ; ζ) ≈ 1 and k̃(z̃(r)/

√
λ; ζ) ≈ 1 from (4.7). The equations of

motion (4.12) are then reduced at the leading order of λ to

D
(r)
M FNM

(r) = 0 , (4.14a)

D
(r)
M F 0M

(r) =
27πκ

8κ̃
ǫMNPQF̂

MN
(r) FPQ

(r) , (4.14b)

∂
(r)
M F̂NM

(r) = 0 , (4.14c)

∂
(r)
M F̂ 0M

(r) =
27πκ

8κ̃
ǫMNPQ

[

tr
(

FMN
(r) FPQ

(r)

)

+
1

2
F̂MN

(r) F̂PQ
(r)

]

, (4.14d)

where M,N,P,Q = 1, 2, 3, z̃. Since (4.14a) is a four-dimensional instanton equation, its

classical solution can be described as BPST instanton [41],

Acl
M (xi, z̃)

(

=
√
λA(r)M (xi

(r), z̃(r))
)

= −iv(ξ)g∂M g−1 (4.15)

v(ξ) =
ξ2

ξ2 + ρ2
, ξ =

√

(xi −Xi)2 + (z̃ − Z̃)2 ,

g(xi, z) =
(z̃ − Z̃)1− i(xi −Xi)τi

ξ
. (i = 1, 2, 3)

The field strength of Acl
M are calculated as

F cl
ij =

2ρ2

(ξ2 + ρ2)2
ǫijaτa , F cl

z̃j =
2ρ2

(ξ2 + ρ2)2
τj .

This solution is a one-instanton solution. In a similar way we can write a ’t Hooft multi-

instanton solution. The equations (4.14b), (4.14c) lead to

Acl
0 = Âcl

M = 0 (4.16)

with an appropriate gauge fixing. Substituting the solutions (4.15) and (4.16) into the

equation of motion for Â0 (4.14d), we obtain

∂2
M Â0 = −648πκ

λκ̃

ρ4

(ξ2 + ρ2)4
,

which can be solved,

Âcl
0 =

27πκ

λκ̃

ξ2 + 2ρ2

(ξ2 + ρ2)2
. (4.17)
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Here we should note that the ζ dependence is included in the factor κ/κ̃ = ζ−1. This factor

does not appear in the other gauge fields A0, AM , ÂM and these fields are in the order of

λ0. On the other hand, Â0 is in the order of λ−1, that is to say, the ζ dependence is derived

from the λ−1 correction.

In terms of the classical solutions (4.15), (4.16) and (4.17), one can compute the mass

of the baryon M , which depends on the moduli parameters ρ, Z via S = −
∫

dtM from

the action

M = 8π2κ̃

[

1 +
h̃1 + k̃1

2

(

Z̃2 +
ρ2

2

)

+

(

27πκ

λκ̃

)2 1

5ρ2

]

= 8π2κζ

(

1 +
1

3ζ2
Z2 +

8ζ3 − 5

18ζ2
ρ2 +

729π2

5λ2ζ2

1

ρ2

)

,

where we used (4.8). Then we can find the critical values of the moduli parameters so that

M is minimized,

Zcr = 0 , ρ2
cr =

81π

λ

√

2

40ζ3 − 25
, (4.18)

and the minimum value of M becomes

Mmin = 8π2κ

(

ζ +
18π

λζ

√

8ζ3 − 5

10

)

.

From the expression of ρcr we thus see that generalizing the anit-podal case to the

ζ ≥ 1 family of models does not improve the situation that the size of the baryon scales

like ∼ 1/
√
λ and hence stringy corrections can play a role in the game.

The same kind of analysis can be done in the non-critical holographic model in six

dimensions [42, 38]. This will be discussed in section 6.

4.2 Mass spectra

The study of the mass spectra of the baryons is also very similar to the one in [9]. The

idea is to introduce the collective coordinates associated with the instanton solution and

to semi-classically quantize them. The collective coordinates of instanton span a moduli

space with a topology of R
4 × (R4/Z2). The moduli are the position (Xi, Z), the size

ρ =
√

y2
1 + · · · + y2

4 and the SU(2) orientation aI := yI/ρ (I = 1, . . . , 4). As usual the

basic assumption of the semi-classical quantization is that the collective coordinates Xα :=

(Xi, Z, yI) depend on time.

Thus the fluctuations of SU(2) gauge fields are described as

AM (t, x) = V (t, xi)Acl
M (xi, z;Xα(t))V −1(t, xi) − iV (t, xi)∂MV −1(t, xi) ,

where Acl
M has been given by (4.15). The equation of motion (4.14b) determines Φ :=

−iV −1V̇ as

Φ(t, x) = −Ẋi(t)Acl
i (x) − ˙̃Z(t)Acl

z̃ (x) + χa(t)Φa(x) ,

χa = 2(a4ȧa − ȧ4aa + ǫabcabȧc) , Φa =
1

2
v(ξ)gτag

−1 . (4.19)
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In terms of these equations, the field strength of the SU(2) gauge field is written as

FMN = V F cl
MNV

−1 and F0M = V (ẊNF cl
MN + ρ̇∂ρA

cl
M − χaDcl

MΦa)V
−1. The equation

of motion (4.14d) with this solution of AM does not change Â0, that is, Â0 = Âcl
0 .

Substituting the gauge fields obtained so far into the action (4.5), derives a Lagrangian

of the collective coordinates which is the same as in [9],

L = −m0 +
1

2
mX

−̇→
X

2

+
1

2
mZŻ

2 − 1

2
mZω

2
ZZ

2 +
1

2
my

−̇→y 2 − 1

2
myω

2
ρρ

2 − Q

ρ2
, (4.20)

where −̇→y 2
= ρ̇2 + ρ2−̇→a 2

apart from the fact that the various mass parameters are now ζ

dependent as follows

m0 = mX = 8π2κ̃ = 8π2κζ , (4.21a)

mZ = 8π2κ
3ζ

8ζ3 − 5
, ω2

Z =
16ζ3 − 10

9ζ2
, (4.21b)

my = 16π2κζ , ω2
ρ =

8ζ3 − 5

18ζ2
, Q = 8π2κ

729π2

5λ2ζ
. (4.21c)

The system is then quantized in the same way as [9]. Using the canonical momenta,

the corresponding Hamiltonian becomes H = −(2m0)
−1(∂/∂

−→
X )2 − (2m0)

−1(∂/∂Z̃)2 −
(4m0)

−1(∂/∂−→y )2 + U . The isospin and spin currents are defined by

Ia =
i

2

(

y4
∂

∂ya
− ya

∂

∂y4
− ǫabcyb

∂

∂yc

)

, (4.22)

Ja =
i

2

(

−y4
∂

∂ya
+ ya

∂

∂y4
− ǫabcyb

∂

∂yc

)

. (4.23)

For a baryon which is located at
−→
X = 0, in other words, the baryon is static with respect

to fluctuations in the ordinary four-dimensional spacetime. The energy spectra of the

fluctuations of Z and −→y take the following form

Ey = ωρ

(
√

(l + 1)2 + 2myQ+ 2nρ + 1
)

, EZ = ωZ

(

nz +
1

2

)

, (4.24)

and hence, using (4.21) , the baryon mass formula is given by

Ml,nρ,nz
= m0 + Ey + EZ

= 8π2κζ +

√

8ζ3 − 5

3ζ2

[
√

(l + 1)2

6
+

2N2
c

15
+

2(nρ + nz) + 2√
6

]

. (4.25)

l is a positive odd integer and describes a spin J and an isospin I as I = J = l/2. For later

convenience, we write down the wave functions of proton |p ↑〉 and neutron |n ↑〉,

|p ↑〉 ∝ R(ρ; ζ)ψZ(Z; ζ)(a1 + ia2) , |n ↑〉 ∝ R(ρ; ζ)ψZ(Z; ζ)(a4 + ia3) , (4.26)
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N baryons I
(

JP
)

∆ baryons I
(

JP
)

n(940) 1
2

(

1
2
+)

∆(1232) 3
2

(

3
2
+)

N(1440) 1
2

(

1
2

+)
∆(1600) 3

2

(

3
2

+)

N(1535) 1
2

(

1
2

−)
∆(1700) 3

2

(

3
2

−)

N(1650) 1
2

(

1
2
−)

∆(1920) 3
2

(

3
2
+)

N(1710) 1
2

(

1
2

+)
∆(1940) 3

2

(

3
2

−)

N(2090) 1
2

(

1
2

−)

N(2100) 1
2

(

1
2
+)

Table 1: The experimental data of baryon mass spectra [43].

R(ρ; ζ) = ρ−1+2
√

1+N2
c /5 exp

(

−m0

√

8ζ3 − 5

18ζ2
ρ2

)

, (4.27a)

ψZ(Z; ζ) = exp

(

− m0
√

2ζ2(8ζ3 − 5)
Z2

)

. (4.27b)

At this point we would like to compare the baryon masses and in particular the mass

differences between the various baryonic states. For this purpose we first have to turn on

back MKK. If we identify the modes of (l, nρ, nz) = (1, 0, 0) and (3, 0, 0) with n(940) and

∆(1232) (see also table 1), ζ and MKK satisfy

Ncλ

27π
ζ +

√

8ζ3 − 5

3ζ2

(

√

2

3
+

6

5
+

√

2

3

)

=
940

MKK
, (4.28)

Ncλ

27π
ζ +

√

8ζ3 − 5

3ζ2

(

√

8

3
+

6

5
+

√

2

3

)

=
1232

MKK
. (4.29)

We can read from these equations,

MKK

√

8ζ3 − 5

3ζ2
=

292
√

15√
58 −

√
28
. (4.30)

Since the left hand side of this equation is the monotonically increasing function of ζ, the

Kaluza-Klein mass MKK is bounded as

MKK ≤ 292
√

15√
58 −

√
28

≈ 487 [MeV] . (4.31)

In terms of (4.28) (or (4.29)) and (4.30), we can now compute the baryon masses

MKKMl,nρ,nz
[MeV], which are shown in table 2 and compare them to the experimental

data of table 1. This is done by first fixing Nc = 3. Since the 1/Nc corrections are im-

portant for the states of larger quantum numbers, it is physically better to fit the baryon

mass formula (4.25) to the experimental data by using the lower quantum numbers. But

here instead we determine the masses by using a best fit approach, namely, minimizing χ2
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N baryons (nρ, nz) MKKM1,nρ,nz ∆ baryons (nρ, nz) MKKM3,nρ,nz

n(940) (0, 0) 940 ∆(1232) (0, 0) 1232

N(1440) (1, 0) 1337 ∆(1600) (1, 0) 1629

N(1535) (0, 1) 1337 ∆(1700) (0, 1) 1629

N(1650) (1, 1) 1735 ∆(1920) (2, 0), (0, 2) 2027

N(1710) (2, 0), (0, 2) 1735 ∆(1940) (1, 1) 2027

N(2090) (2, 1), (0, 3) 2132

N(2100) (1, 2), (3, 0) 2132

Table 2: The baryon mass spectra in our model.

N baryons (nρ, nz) MKKM1,nρ,nz ∆ baryons (nρ, nz) MKKM3,nρ,nz

n(940) (0, 0) 1027 ∆(1232) (0, 0) 1282

N(1440) (1, 0) 1374 ∆(1600) (1, 0) 1629

N(1535) (0, 1) 1374 ∆(1700) (0, 1) 1629

N(1650) (1, 1) 1721 ∆(1920) (2, 0), (0, 2) 1976

N(1710) (2, 0), (0, 2) 1721 ∆(1940) (1, 1) 1976

N(2090) (2, 1), (0, 3) 2068

N(2100) (1, 2), (3, 0) 2068

Table 3: The baryon masses by the use of the minimal χ2 fitting.

with respect to the all states listed in table 1. We need to determine the two parameters

A and B which are defined from (4.25) by

MKKMl,nρ,nz
= A+B

[
√

(l + 1)2

6
+

6

5
+

2(nρ + nz) + 2√
6

]

,

A :=
MKKλ

9π
ζ , B := MKK

√

8ζ3 − 5

3ζ2
.

Though we should take care of the zero point energy, here it can be absorbed into A.

Then (A,B) = (99.9, 424.8) is the best fit. This implies that λ is not large and hence 1/λ

corrections may not be negligable. The Kaluza-Klein mass is bounded so that MKK ≤ 424.8

[MeV]. The mass spectra evaluated in terms of these values are shown in table 3. Since

there are more degeneracies for the states with larger quantum numbers, the χ2-fitted data

are strongly affected by these states.

4.3 Mean radii, magnetic moments and couplings

Next we should like to determine the impact of ζ 6= 1 on the baryonic properties of the

mean radii, magnetic moments and various couplings. For that purpose we consider the

currents of the U(Nf )L × U(Nf )R chiral symmetry in the same way as was done in [37].

On account of the gauge configuration

Aα(xµ, z̃) = Acl
α(xµ, z̃) + δAα(xµ, z̃) ,

δAα(xµ,+∞) = ALµ(xµ) , δAα(xµ,−∞) = ARµ(xµ) ,
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we can read the currents from the action (4.11),

Sgauge = −2

∫

d4xTr
(

ALµJ µ
L +ARµJ µ

R

)

+ O(δA2) ,

where

JLµ = −κ̃
(

k̃(z̃)Fcl
µz̃

)∣

∣

∣

z̃=+∞
, JRµ = κ̃

(

k̃(z̃)Fcl
µz̃

)∣

∣

∣

z̃=−∞
. (4.32)

Obviously from the left and right currents one can form the vector and axial currents as

follows,

JV µ = LLµ + JRµ = −κ̃
[

k̃(z̃)Fcl
µz̃

]z̃=+∞

z̃=−∞
, (4.33)

JAµ = LLµ − JRµ = −κ̃
[

k̃(z̃)Fcl
µz̃ψ0(z̃)

]z̃=+∞

z̃=−∞
. (4.34)

ψ0(z̃) is defined by ψ0(z̃) := ξ(z̃)/ξ(∞) in terms of the function ξ(z̃) satisfying the equation

k̃(z̃)∂z̃ξ(z̃) = 1. ξ(z̃) can be rewritten as

ξ(z̃) =

∫ z̃

0

dz̃′

k̃(z̃′)
, (4.35)

because ξ(z̃) is an odd function and ξ(0) = 0. Then ψ0(z̃) has the property of ψ0(±∞) =

±1. The currents are also decomposed as the gauge fields (4.9) to the SU(2) and U(1) parts,

J µ = Jµ + (1/2)Ĵµ. In order to evaluate the currents (4.33) and (4.34), it is necessary to

understand the behavior of the gauge field strengths at the UV boundary, z̃ = ±∞. But

so far we know the expression of the gauge field strengths only in the region of z̃ ≪ 1.

Ref. [37] has succeeded in extending it to the large z̃ region in the anti-podal case (ζ = 1).

In the same way, we can easily evaluate in the non-anti-podal case the gauge field strengths

for Z̃ ≪ 1 ≪ z̃,

F0z̃ ≈ 2π2∂0

(

ρ2aτaa−1
)

∂aH − 4π2iρ2aȧ−1∂z̃G

− 2π2ρ2aτaa−1Ẋi
{(

∂i∂a − δia∂
2
j

)

H − ǫiaj∂
j∂z̃G

}

, (4.36a)

Fiz̃ ≈ 2π2ρ2aτaa−1
{(

∂i∂a − δia∂
2
j

)

H − ǫiaj∂
j∂z̃G

}

, (4.36b)

F̂0z̃ ≈ 108π3κ

λκ̃
∂z̃G , (4.36c)

F̂iz̃ ≈ 108π3κ

λκ̃

[

˙̃Z∂iH − Ẋi∂z̃G− ρ2χa

4

{(

∂i∂a − δia∂
2
j

)

H − ǫiaj∂
j∂z̃G

}

]

, (4.36d)

where a = a4 + iaaτ
a. H and G are the Green’s functions generalised for the curved

background,

G = κ̃

∞
∑

n=1

ψn(z̃)ψn(Z̃)Yn(|−→x −−→
X |) , H = κ̃

∞
∑

n=0

φn(z̃)φn(Z̃)Yn(|−→x −−→
X |) . (4.37)

The eigen functions ψn’s are defined by

−h̃(z̃)−1∂z̃

(

k̃(z̃)∂z̃ψn

)

= λnψn , κ̃

∫

dz̃ h̃(z̃)ψmψn = δmn , (4.38)
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while φn’s are defined on account of (4.35) by

φ0(z̃) =
1

√

2κ̃ξ(∞)k̃(z̃)
, φn(z̃) =

1√
λn
∂z̃ψn(z̃) , (n ∈ N) (4.39)

so that these modes satisfy the normalisation κ̃
∫

dz̃ k̃(z̃)φmφn = δmn for n,m ∈ {0,N}. Yn

denotes the Yukawa potential5

Yn(r) = − 1

4π

e−
√

λnr

r
. (4.40)

Mean square radii. The baryon number current is denoted in terms of the vector

current (4.33) by

Jµ
B =

2

Nc
Ĵµ

V = − 2

Nc
κ̃
[

k̃(z̃)F̂µz̃
]z̃=+∞

z̃=−∞
. (4.41)

Since the baryon number NB is calculated as NB =
∫

d3x 〈J0
B〉 = 1, the baryon number

density ρB with respect to the radial direction r = |−→x −−→
X | is described as

ρB(r) = 4πr2〈J0
B〉 = −4πr2

∞
∑

n=1

(

λ2n−1κ̃

∫

dz̃ h̃(z̃)ψ2n−1(z̃)

)

ψ2n−1(Z̃)Y2n−1(r) . (4.42)

Then the isoscalar mean square radius becomes

〈r2〉I=0 =

∫ ∞

0
dr r2ρB(r)

= 6κ̃
∞
∑

n=1

1

λ2n−1

∫

dz̃ h̃(z̃)ψ2n−1(z̃)
〈

ψ2n−1(Z̃)
〉

. (4.43)

Since the baryon is almost localized at Z̃ = Z̃cr = 0 on account of (4.18) and (4.27b),
〈

ψ2n−1(Z̃)
〉

can be approximated by ψ2n−1(0). Then, in the same way of [37], the isoscalar

mean square radius is evaluated

〈r2〉I=0 ≈ 1

M2
KK

∫ ∞

0
dz̃′

1

k̃(z̃′; ζ)

∫ z̃′

0
dz̃′′6h̃(z̃′′; ζ) , (4.44)

where we recovered the factor MKK explicitly. One can numerically compute these inte-

gration and depict the results depending on ζ in figure 5. The mean square radius (4.44)

in the anti-podal case (ζ = 1) has been calculated in [37], that is, M2
KK〈r2〉I=0 ≈ 14.3. If

the mass scale MKK is fixed, then the mean radius decreases with respect to ζ as can be

seen in figure 5.

From the isovector charge QV = (τa/2)Q
a
V , we obtain from (4.33) and (4.36a)

Qa
V = tr

(

τa

∫

d3xJ0
V

)

= −
∫

dr 4πr2Ia
∞
∑

n=1

(

λ2n−1κ̃

∫

dz̃ h̃(z̃)ψ2n−1(z̃)

)

ψ2n−1(Z̃)Y2n−1(r) , (4.45)

5The eigen equation in (4.38) is rewritten through (4.3) and (4.6) as −h(z)−1∂z

`

k(z)∂zψn

´

= λnψn,

which is exactly the eigen equation providing the meson mass spectra. That is to say, the meson mass mn

is denoted by mn =
√

λn.
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KK〈r2〉I=0 ζ
Figure 5: The ζ dependence of the isoscalar mean radius M2

KK〈r2〉I=0

where we used 4π2κ̃ρ2itr(τaaȧ−1) = Ia, which is derived from (4.22). The isovector charge

density ρV (r) is defined by Qa
V =

∫

dr IaρV (r). Comparing (4.45) with (4.42), we can

show that ρV (r) is equal to the baryon number density ρB(r). So the isovector mean

square charge radius is the same as the isoscalar mean square radius. This statement does

not change from the ζ = 1 case investigated by [37]. The electric mean square charge radii

also have been mentioned in [37], where the mean radius for a proton 〈r2〉E,p and the one

for a neutron 〈r2〉E,n become

〈r2〉E,p = 〈r2〉I=0 , 〈r2〉E,n = 0 .

These equations are satisfied also in the non-anti-podal case.

Since the axial current (4.34) leads to
∫

d3xJA ∝ −
∫

dr 4πr2
∞
∑

n=1

(

λ2nκ̃

∫

dz̃ h̃(z̃)ψ2n(z̃)ψ0(z̃)

)

∂Z̃ψ2n(Z̃)Y2n(r) =
1

k̃(Z̃)ξ(∞)
,

and also
∫

d3xJA ∝
∫

drρA(r), the axial charge density ρA(r) is defined by

ρA(r) =

〈

4πr2
∑∞

n=1

(

λ2nκ̃
∫

dz̃ h̃(z̃)ψ2n(z̃)ψ0(z̃)
)

∂Z̃ψ2n(Z̃)Y2n(r)
〉

〈

1
k̃(Z̃)ξ(∞)

〉 .

Now we shall approximate 〈1/k̃(Z̃)〉 by the classical value 1/k̃(Z̃cr = 0) = 1. Then, in the

way similar to [37], the axial radius 〈r2〉A =
∫

dr r2ρA(r) is described as

〈r2〉A =
3

M2
KK

∫ ∞

−∞
dz̃

1

k̃(z̃)

∫ z̃

0
dz̃′ h̃(z̃′)ψ0(z̃

′) . (4.46)

In terms of (4.6) and (4.35) we can numerically evaluate 〈r2〉A, and its behavior is depicted

in figure 6.6 From this figure, the axial charge mean radius is a monotonically decreasing

function along ζ. Ref. [37] has calculated M2
KK〈r2〉A ≈ 7.82 in ζ = 1.

6The integrations in (4.46) are numerically done by Mathematica in terms of Monte-Carlo method.
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Figure 6: The ζ dependence of the axial charge mean redius M2
KK〈r2〉A.

Magnetic moments. In terms of the baryon number current (4.41), the isoscalar mag-

netic moment is denoted by

µi
I=0 =

1

2
ǫijk

∫

d3xxjJk
B = −ρ

2χi

4
, (4.47)

where χi can be described from (4.19) and (4.23) as

χi =
1

8π2κ̃
J i .

Here we concentrate on the up-spin proton and neutron states, which have the spin

(J1, J2, J3) = (0, 0, 1/2) and the mass M exp
N ≈ 940 [MeV]. By defining the g factor as

µi
I=0 = gI=0(τ

i/4MN ), we can identify the g factor as

gI=0 =
MN

8π2κ̃MKK
. (4.48)

We should note that the ζ-dependence is included in κ̃, which is determined through the

pion decay constant f exp
π ≈ 92.4 [MeV],

(

f exp
π

MKK

)2

=
4κ̃

π2

∫

dz̃
1

k̃(z̃; ζ)
. (4.49)

This equation is read from the mode expansion of (4.2) for the pion field [7]. The isoscalar

magnetic moment gI=0 can be rewritten as

gI=0 =
MKKMN

2π4f2
π

∫ ∞

−∞
dz̃

1

k̃(z̃; ζ)
. (4.50)

The ζ-dependence of gI=0 is proportional to
∫

dz̃ k̃(z̃; ζ)−1, which is depicted in figure 7.
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Figure 7: The plot of M−1
KKgI=0(ζ).

The isovector magnetic moment is given by

µi
I=1 = ǫijk

∫

d3xxjtr(Jk
V τ

3) = −4π2κ̃ρ2tr(aτ ia−1τ3) , (4.51)

We can evaluate (4.51) for the up-spin proton and neutron states as

〈µi
I=1〉p = −〈µi

I=1〉n =
8π2κ̃

3
〈ρ2〉δ3i .

〈ρ2〉 is calculated in terms of the wave function (4.27a)

〈ρ2〉 =

∫

dρ ρ5R(ρ)2
∫

dρ ρ3R(ρ)2
=

√
5 + 2

√

5 +N2
c

2Nc
ρ2
cr(ζ) ,

where ρcr has been calculated in (4.18). Since the gI=1 factor is defined in the same way

as the isovector magnetic moment, we obtain

gI=1 =
2
√

2MN

MKK

(

1 + 2

√

1 +
N2

c

5

)

ζ
√

8ζ3 − 5
. (4.52)

The function MKKgI=1 of ζ with Nc = 3 is drawn in figure 8. By the use of (4.50)

and (4.52), the magnetic moments for a proton and a neutron can be easily computed as

µp = (gI=0 + gI=1)/4 and µn = (gI=0 − gI=1)/4 respectively.

Couplings. The axial coupling gA is defined in terms of the axial current J i
A in (4.34) as

∫

d3x〈Ja,i
A 〉 =

1

2
gA〈tr(aτ ia−1τa)〉 , (4.53)

where Ja,i
A = tr(τaJ i

A). Since the left hand side of (4.53) is calculated from (4.32), (4.34)

and (4.36b),
∫

d3x〈Ja,i
A 〉 =

8π2κ̃

6ξ(∞)

〈

ρ2

k̃(Z̃)

〉

〈tr(aτ ia−1τa)〉 ,
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Figure 9: The plot of gA(ζ) with Nc = 3.

one can read the axial coupling

gA(ζ) =
8π2κ̃

3ξ(∞)

〈

ρ2

k̃(Z̃)

〉

≈
√

2Nc

ξ(∞)

ζ
√

40ζ3 − 25
. (4.54)

The approximation was given by the classical values, that is, ρ ≈ ρcr and k̃(Z̃) ≈ k̃(Z̃cr) = 1

with (4.18). We should note that ξ(∞) also depends on ζ and can be numerically computed

from (4.35). Then gA(ζ) with Nc = 3 can be drawn as figure 9. In the anti-podal case, [37]

evalulated the axial coupling, gA(ζ = 1) ≈ 0.697. Since (4.54) is independent of MKK, we

shall compare gA(ζ) with the experimental datum gexp
A , which is approximately equal to

1.27. If we set gA(ζ) ≈ 1.27, then (4.54) leads to ζ ≈ 0.870. But this solution is nonsense,

because ζ must be in [1,∞) by definition. At present, the best fitted value of ζ for the
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experimental data is ζ = 1, that is, the anti-podal SS model. We shall give more comments

on this issue in section 7.

4.4 MKK and ζ fitted to experimental data

So far we have calculated the baryon mass spectra, the mean radii, the magnetic moments

and the couplings as functions of MKK and ζ. Comparing those quantities with the exper-

imental data, we shall determine MKK and ζ. We remind the reader that for ζ = 1 these

properties of the baryons were computed in [37]. The idea is to find the values of MKK and

ζ that yield the best fit to the experimental data. We shall extract the relation between

MKK and ζ in five different ways from the baryonic data and in two more ways from the

mesonic spectra.

We start with the mass difference (4.30) between the neucleon, n(940), and the lowest

mode of ∆-baryon, ∆(1232), from which we find the following relation between MKK and ζ:

MKK =
876

√
5√

58 −
√

28

ζ
√

8ζ3 − 5
=: B1(ζ) . (4.55)

Next we use the isoscalar mean square radius (4.44) to obtain

MKK =

√

6

〈r2〉exp
I=0

∫ ∞

0
dz̃′k̃(z̃′; ζ)−1

∫ z̃′

0
dz̃′′h̃(z̃′′; ζ) =: B2(ζ) , (4.56)

where the experimental datum of the isoscalar mean square radius 〈r2〉exp
I=0 ≈ 0.806 [fm].

Using (4.35), we calculate MKK from the axial mean radius (4.46),

MKK =

√

√

√

√

3
∫∞
−∞ dz̃ k̃(z̃)−1

∫ z̃
0 dz̃

′ h̃(z̃′)
∫ z̃′

0 dz̃′′ k̃(z̃′′)−1

〈r2〉exp
A

∫∞
0 dz̃ k̃(z̃)−1

=: B3(ζ) , (4.57)

where the experimental datum of the axial mean square radius 〈r2〉exp
A ≈ 0.674 [fm].

The isoscalar magnetic moment (4.50) yields the relation

MKK =
π4(f exp

π )2gexp
I=0

M exp
N

∫∞
0 dz̃ k̃(z̃; ζ)−1

=: B4(ζ) . (4.58)

The experimental data of the pion decay constant and the isoscalar magnetic moment are

given by f exp
π ≈ 92.4 [MeV] and gexp

I=0 ≈ 1.76. Substituting Nc = 3 into the isovector

magnetic moment (4.52), MKK is written down as

MKK =
2
√

2M exp
N

gexp
I=1

(

1 + 2

√

14

5

)

ζ
√

8ζ3 − 5
=: B5(ζ) . (4.59)

M exp
N and gexp

I=1 are given by the experimental values, M exp
N ≈ 940 [MeV] and gexp

I=1 ≈ 9.41.

The meson spectra have been studied extensively in the literature. Here we consider

the ρ and a1 mesons. We match the calculated masses with the experimental data, so that

MKK =
mexp

ρ

mρ(ζ)
=: M1(ζ) , (4.60)

MKK =
mexp

a1

ma1(ζ)
=: M2(ζ) . (4.61)
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The functions mρ(ζ) and ma1(ζ) are dimensionless and have been evaluated numerically

in [44]. The experimental values of the meson masses are described as mexp
ρ ≈ 776 [MeV]

and mexp
a1 ≈ 1230 [MeV].

The various forms of dependence of MKK on ζ are depicted in figure 10. In figure 11

we enlarge the picture in the two regions where the various functions are crossing. One

region (figure 11 (a)) is in the “un-physical domain” where ζ < 1, and the other is for

ζ ≥ 1. The values (MKK, ζ) of each crossing point in figure 11 is listed in table 4.

(4.55) and (4.59) have no crossing point and B5/B1 is independent of ζ. B5/B1 should

be equal to one in order for the prediction of the model to fit the obsevational values. In

fact, substituting the experimental values, we evaluate

B5/B1 =
(
√

29 −
√

14)(
√

5 + 2
√

14)gexp
I=1

1095M exp
N

≈ 1.457 ,

which means 45.7% difference.
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label (ζ,MKK) label (ζ,MKK) label (ζ,MKK)

1 (0.856, 1240) 10 (0.909, 1110) 19 (1.80, 608)

2 (0.874, 1250) 11 (0.913, 1100) 20 (2.42, 520)

3 (0.875, 1220) 12 (0.914, 1070) 21 (2.45, 457)

4 (0.877, 1180) 13 (0.941, 879) 22 (2.84, 430)

5 (0.887, 984) 14 (0.943, 884) 23 (3.86, 222)

6 (0.890, 1160) 15 (0.946, 872) 24 (4.47, 206)

7 (0.891, 1150) 16 (0.977, 952) 25 (5.09, 132)

8 (0.906, 784) 17 (0.986, 967) 26 (5.97, 122)

9 (0.909, 1110) 18 (0.997, 986)

Table 4: The crossing points in figure 11.

our model experiment discrepancy[%]

mρ 746 MeV 776 MeV −3.86

ma1 1160 MeV 1230 MeV −5.31
m∆(1232)

mn(940)
1.51 1.31 15.2

√

〈r2〉I=0 0.813 fm 0.806 fm 0.920
√

〈r2〉A 0.594 fm 0.674 fm −11.9

gI=0 1.99 1.76 13.1

gI=1 8.41 9.41 −10.7

Table 5: The χ2-fitting.

A better way to determine the values of the two parameters (ζ,MKK) is by a fit of the

calculated results to the experimental data using a χ2-method. This leads to the values

ζ = 0.942 , MKK = 997 [MeV] . (4.62)

Since in the model of [7] ζ must satisfy ζ ≥ 1 by definition, the result for ζ in (4.62)

does not make sense. Let us ignore this problem for a moment, estimate the physical

quantities naively by using the values (4.62) and then discuss possible scenario that yields

this situation. The calculated results based on (4.62) are summarized in table 5. Note

that, in this table, we fixed mn(940) = 940 in the calculation of m∆(1232)/mn(940). The axial

coupling gA is independent of MKK, and is evaluated in terms of ζ in (4.62) as gA = 0.779,

which has −38.7% difference from the experimental value.

Now let us come back to the issue of possible meaning of (4.62). First notice that the

value of ζ is larger than the critical value defined in section 2, ζcr = (5/8)1/3. The fact that

the value of ζ yielding the best fit came out to be in the un-physical region of ζ < 1 may

indicate that the description of the baryonic phenomena in the model [7], as given in [37],

has to be modified. We cannot pinpoint the precise reason for that, but it might be that,

due to local back reaction of the flavor brane with the baryon vertex on the background, the

U-shaped cigar geometry is distorted so that effectively ζ < 1 is allowed. Again we do not

know that this is indeed the case but it seems to us that the fact that we have found the pa-

rameter ζ out of its region of definition may indicate a problem with the scenario for (4.62).
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5. Baryons in single flavor model (Nf = 1)

We have started our journey with the baryon vertex attached to the flavor branes with Nc

strings. In this picture, which was analyzed in section 3, nothing forbids us from taking

only one single flavor brane, namely Nf = 1. The heuristic arguments about the stability

of the configuration apply also to the single flavor brane case, and moreover the conclusion

that the baryon vertex is immersed in the flavor brane and does not hang out of it applies

here as well. Thus, we conclude that there should be baryonic solutions for the abelian

analog of (4.5) plus (4.10). In fact from the point of view of the underlying SU(Nc) QCD

theory, there is no reason that there will not exist baryonic states as singlets of the gauge

symmetry composed from Nc quarks.

The action describing the theory on the single flavor, which is reduced from the ex-

panded DBI action and the Chern-Simon term, takes the following form:

SNf =1 = −κ̃
∫

d4xdz̃

(

1

2
h̃(z̃)F 2

µν + k̃(z̃)F 2
µz̃

)

+
9πκ

4λ

∫

d4xdz̃ ǫijkA0FijFkz̃ . (5.1)

Here (Aµ, Az̃) denotes a U(1) gauge field in five dimensions.

The associated equations of motion are

h̃(z̃)∂iF
i0 + ∂z̃

(

k̃(z̃)F z̃0
)

= −9πκ

8λκ̃
ǫijkFijFkz̃ , (5.2a)

h̃(z̃)∂µF
µi + ∂z̃

(

k̃(z̃)F z̃i
)

= −9πκ

8λκ̃
ǫijk[2∂j(A0Fkz̃) + ∂z̃(A0Fjk)] , (5.2b)

k̃(z̃)∂µF
µz̃ =

9πκ

8λκ̃
ǫijk∂k(A0Fij) . (5.2c)

For simplicity, we shall consider the anti-podal case (ζ = 1), in which z̃ = z, h̃(z̃) =

(1 + z2)−1/3, k̃(z̃) = 1 + z2 and κ̃ = κ. We assume that the U(1) gauge field is static and

analyze the leading behavior in the λ−1 expansion under the rescaling (4.13). Then the

equations of motion (5.2) are reduced to

∂2
MA0 = −9π

8
ǫijkFijFkz , (5.3a)

∂MF
MN = 0 . (5.3b)

(5.3b) is the U(1) version of the instanton equation in four-dimensional Euclidean space.

Now it is well known that the abelian theory does not admit a non-singular instanton

solution and thus we are facing a problem of how to identify the baryon in such a theory.

In fact this situation is of no surprise, since in a similar manner there is no Skyrmion

solution to an abelian Skyrme-like theory.

We suspect that there should be a solution once we switch back the curvature nature

of the five-dimensional model, namely when we include higher order corrections in 1/λ.

This is an open question that deserves a further study.

6. Baryons in six-dimensional holographic model

In analogy to SS model [7], one can introduce a stack of Nf D4-branes and a stack of Nf

anti-D4-branes to the background of near extremal D4-branes of a six-dimensional non-
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critical gravity model [38, 42]. The model, which like all other non-critical models suffers

from the fact that it has order one curvature, is based on a compactified AdS6 spacetime

with a constant dilaton and hence does not suffer from large string coupling as happens in

SS model. The spectra of mesons were analyzed in [45, 46] and its thermal phase structure

was determined in [47]. Most of the properties of the non-critical holographic model are

similar to those of SS model, but some properties like the dependence of the meson masses

on the stringy mass of the quarks and the excitation number are different.

The purpose of this section is to investigate the baryon configurations in the non-

critical holographic model of [42] and to see how, if at all, it differs from those of the

critical model. As was discussed in section 3, the baryon vertex is a D4-brane wrapping

the transverse S4 cycle. In the six dimensional model by construction the S4 does not

exist, so one may wonder that the whole idea might not work for that model. However,

one can use instead unwrapped D0-branes. In analogy to the Chern-Simon term on the

worldvolume of the wrapped D4-branes discussed in section 3, there is also a Chern-Simon

term of the form NcA0dt on the D0-brane worldvolume and hence also in this case one

needs to attach Nc strings to the D0-baryon vertex. The other end of each of these strings

will be obviously attached to the probe flavor D4-branes. Just as for the near extremal

D4-branes of the critical model, and in fact as is shown in appendix A for any Dp branes,

also in the non-critical model the baryon vertex will be attached to the probe branes. Let

us now analyze the baryons in the corresponding five-dimensional theory.

The background of this model [38, 42] is given by

ds2 =

(

u

R

)2
[

ηµνdx
µdxν + f(u)dx2

4

]

+

(

R

u

)2 du2

f(u)
, (6.1)

eφ =
2
√

2√
3Nc

, F(6) = −Nc

(

u

R

)4

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ du ,

R2 =
15

2
, f(u) := 1 −

(

uKK

u

)5

.

Since the period of x4 direction is 4πR2/(5uKK), the mass scale is

MKK =
5uKK

2R2
.

We concentrate on the Nf = 2 case and use the same decomposition of the U(2) gauge field

as in (4.9). In this background (6.1), the action of the flavor D4-branes is described by

S = T4

∫

d5x e−φ
√

− det(gMN + 2πα′FMN ) + T4ã

∫

P(C(5)) + b

∫

ω
U(2)
5

= S0 + SYM + SCS + O(A3) ,
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where

S0 = T4e
−φ

∫

d4xdx4

(

u

R

)5
[

√

f(u) +

(

R

u

)4 u′2

f(u)
− a

]

,

SYM = −T̃
∫

d4xdz tr

[

1

2
h(z)ηµνηρσFµρFνσ +M2

KKk(z)η
µνFµzFνz

]

, (6.2)

SCS = bǫMNPQ

∫

d4xdz

[

3

8
Â0tr(FMNFPQ) − 3

2
ÂM tr(∂0ANFPQ)

+
3

4
F̂MN tr(A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ

]

, (6.3)

up to total derivatives. T̃ is equal to (πα′)2T4Re
−φuKK

−1, which is proportional to Nc. So

we describe T̃ := cNc. Note that ã, b are constants and a = (2/
√

5)ã [47]. Introducing the

coordinate z defined by
(

u

uKK

)5

= ζ5 + ζ3z2 , ζ :=
u0

uKK
,

we compute h(z) and k(z) in the power expansion for small z,

h(z) = h0 + h1z
2 + O(z4), k(z) = k0 + k1z

2 + O(z4) ,

h0 =
4ζ

3
2

5

√

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1
, h1 =

2(a2 − 1)ζ
9
2

5
(

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1
)3/2

,

k0 =
4

5
ζ

1
2

√

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1 , k1 =
2

25

(13 − 5a2)ζ5 − 4 − 8aζ5/2
√

ζ5 − 1

ζ3/2

√

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1
.

Without any loss of generality, we can set MKK = 1 again. Using the rescaling

x0 → x0 , xi → 1√
Nc
xi , z → 1√

Nc
z ,

A0 → A0 , Ai →
√

NcAi , Az →
√

NcAz , (6.4)

the Yang-Mills action (6.2) is expanded with respect to the large Nc,

SYM = −c
∫

d4xdz tr

[

Nc

(

1

2
h0F

2
ij + k0F

2
iz

)

+
1

2
h1z

2F 2
ij + k1z

2F 2
iz − h0F

2
0i − k0F

2
0z + O(N−1

c )

]

− c

∫

d4xdz
1

2

[

Nc

(

1

2
h0F̂

2
ij + k0F̂

2
iz

)

+
1

2
h1z

2F̂ 2
ij + k1z

2F̂ 2
iz − h0F̂

2
0i − k0F̂

2
0z + O(N−1

c )

]

.

Then the equations of motion for the SU(2) part are described as

h0D
iFi0 + k0D

zFz0 −
3b

8c
ǫMNPQF̂MNFPQ = 0 , (6.5a)

h0D
iFij + k0D

zFzj = 0 , (6.5b)

k0D
iFiz = 0 , (6.5c)
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while the equations of motion for the U(1) part are

h0∂
iF̂i0 + k0∂

zF̂z0 −
3b

8c
ǫMNPQ

[

tr(FMNFPQ) +
1

2
F̂MN F̂PQ

]

= 0 , (6.6a)

h0∂
iF̂ij + k0∂

zF̂zj = 0 , (6.6b)

k0∂
iF̂iz = 0 . (6.6c)

Since (6.5b), (6.5c) correspond to the instanton equation, in completely the same way as

in SS model, the equations of motion (6.5) and (6.6) can be solved as

AM (xi, z) = −iv(ξ)g∂M g−1 (M = 1, 2, 3, z) , (6.7a)

A0 = 0 , (6.7b)

ÂM = 0 , (6.7c)

Â0 =
3b

c
√
h0k0

1

ξ2

[

1 − ρ4

(ξ2 + ρ2)2

]

, (6.7d)

where

v(ξ) =
ξ2

ξ2 + ρ2
, g(xi, z) =

s(z − Z)1 − i(xi −Xi)τi
ξ

,

ξ :=
√

(xi −Xi)2 + s2(z − Z)2 , s :=

√

h0

k0
.

These solutions (6.7) lead to the baryon mass,

M = Ncc

∫

d3xdz tr

(

h0

2
F 2

ij + k0F
2
iz

)

+ c

∫

d3xdz

[

tr

(

h1

2
z2F 2

ij + k1z
2F 2

iz

)

− h0

2
(∂iÂ0)

2 − k0

2
(∂zÂ0)

2

− 3b

8c
ǫMNPQÂ0tr(FMNFPQ)

]

+ O(N−1
c )

=
32π2c

5
Ncζ +

32π2c

25ζ
Y 2

+
16π2c

25ζ2

(

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1
)

ρ2 +
18π2b2

ζ

1

ρ2
+ O(N−1

c ) .

The critical value of Y and ρ minimizing the baryon mass M is evaluated

Ycr = 0, ρ2
cr =

15b

2
√

2c

√

ζ

2ζ5 − 1 − 2aζ5/2
√

ζ5 − 1
.

Since the non-critical model has an effective ’t Hooft model of order one, we find that

in the non-critical case the size of the baryon is order one.
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7. Conclusions and discussions

We have considered the baryon sector in the non-anti-podal SS model, where the parameter

ζ is introduced in addition to Kaluza-Klein mass MKK and ’t Hooft coupling λ. This model

converges to the original (anti-podal) SS model at ζ = 1.

The baryon mass formula (4.25) has been calculated as a function of ζ and MKK. We

have compared the mass spectra with the experiment in the two ways. Firstly, identifying

the two lowest modes with the experimental values of n(940) and ∆(1232), we have obtained

the relation (4.30) between ζ and MKK and computed the mass spectra of N and ∆ baryons

as shown in table 2. The relation (4.30) implies that MKK is bounded to be less than

487 MeV because of ζ ≥ 1 by definition. Secondly the baryon masses have been evaluated

by the use of the minimal χ2 fitting. In this method, we can read that the upper bound of

MKK is 424.8 MeV. Anyway, in both cases, MKK does not reach 949 MeV used in [7, 37].

By following the method given by [37], we have analyzed the isoscalar, isovector and ax-

ial mean square radii, the isoscalar and isovector magnetic moments and the axial coupling.

We have incorporated these physical quantities with the mass spectra of the baryons and ρ

and a1 mesons, and compared them with the experiment. Then we have obtained MKK as

the functions of ζ, which are depicted in figure 10. From these analyses we conclude that

the ζ = 1 model, that is, the original SS model, is fitted best to the experiment. However,

if without any justification ζ < 1 is permitted by some modification of SS model, we have

found that the best-fitted values of (ζ,MKK) are (0.942, 997[MeV]) by the use of the χ2

method. The physical quantities computed with these values are listed in table 5 and are

in good agreement with the experiment. Though the appropriate modification of the incor-

poration of baryons to SS model is still not clear to us, here there are two possible options:

• Since the weighted baryon vertex which is located at the tip of the U-shaped flavor

D8-branes has an object with energy that scales with Nc, it might backreact on the

flavor brane and also on the background geometry in such a way that the tip of the

cigar would be pulled down to u∗KK(< uKK). Then ζ, which defined by (4.1), can

take the value in ζ ≥ u∗KK/uKK, where the lower bound of ζ is smaller than one.

• SS model is the dual of massless QCD. In order to put mass on the quarks, we need to

consider the contribution of the open strings ending on the flavor D8-branes [33 – 36].

The tension of the open strings would pull up the D8-branes and the best-fitted value

of ζ, which is smaller than one, might be recovered to the value in ζ ≥ 1.

We have also calculated the energy of the D4-brane wrapped in S4 as a baryon vertex

and analyzed its stability with respect to the location uB on the u direction. In the

confinement phase, the energy is monotonic on uB , the baryon vertex is stabilized at

uB = u0, that is to say, the baryon vertex stays at the tip of the flavor D8-branes. On

the other hand, in the deconfinement phase, there appears an interesting property. This

is caused by the balance between the tension of the Nc open strings, which corresponds

to the quarks of baryon, and the attractive force from the black hole. The parameter

uT corresponds to temperature. Here we consider the behavior of the baryon vertex with
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respect to uT by fixing the tip of the D8-branes u0. If x0(= u0/uT ) is larger than xcr

given by (3.1), the baryon vertex becomes stable at the tip of the D8-branes. If x0 is

smaller than xcr, the baryon vertex goes to the tip of the cigar background, which is a

black hole. In other words, the baryon vertex can be realized at the tip of the D8-branes

at temperatures lower than a critical temperature, but it falls down into the black hole at

temperatures higher than the critical temperature. This property is similar to the chiral

symmetry restoration [30].

Finally we have commented on the single flavor model. It is impossible to apply the

Skyrme model to the case of single flavor, because there does not exist a U(1) instanton.

On the other hand, in the holographic models, we can easily suppose the picture of the

baryon vertex with single flavor. Though the instanton solution also plays an important

role in our analysis of baryons, we conclude that the singular solution of the U(1) gauge

field is interpreted as the baryon.
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A. Baryon vertex in Dp-branes’ background

Let us consider the energy Ep of D(8 − p)-brane wrapped on S8−p and Nc fundamental

strings, which is denoted by

Sp = −T8−p

∫

dtdΩ8−pe
−φ
√

− det gD(8−p) −NcTf

∫

dtdu
√

− det gstring =:

∫

dtEp ,

where the tension of D(8 − p)-brane T8−p = (2π)p−8lp−9
s .
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A.1 Confinement phase

The metric of the background is described as

ds2 =

(

u

Rp

)
7−p
2
[

−dt2 +

p−1
∑

i=1

(dxi)2 + f(u; p)(dxp)2
]

+

(

Rp

u

)
7−p
2
[

du2

f(u; p)
+ u2dΩ8−p

]

,

R7−p
p =

gsNc(2πls)
7−p

(7 − p)V8−p
, eφ = gs

(

Rp

u

)

(7−p)(3−p)
4

, f(u; p) = 1 −
(

uΛ

u

)7−p

,

where V8−p is the unit volume of S8−p, which is equal to 2π(9−p)/2/Γ((9−p)/2). The energy

is described as

Ep(uB ;u0) =
NcuΛ

2πl2s
E(p)

conf , E(p)
conf(x;x0) =

1

7 − p
x+

∫ x0

x

dy
√

1 − yp−7
,

x :=
uB

uΛ
, x0 :=

u0

uΛ
, 1 ≤ x ≤ x0 .

The integration can be computed in terms of the hypergeometric function 2F1,

∫ x0

x

dy
√

1 − yp−7
= − 2ix

9−p
2

9 − p
2F1

(

p− 9

2p − 14
,
1

2
,
23 − 3p

14 − 2p
, x7−p

)

+
2ix

9−p
2

0

9 − p
2F1

(

p− 9

2p − 14
,
1

2
,
23 − 3p

14 − 2p
, x7−p

0

)

.

A.2 Deconfinement phase

The metric of the background is described as

ds2 =

(

u

Rp

)
7−p
2
[

−fT (u; p)dt2 +

p
∑

i=1

(dxi)2
]

+

(

Rp

u

)
7−p
2
[

du2

fT (u; p)
+ u2dΩ8−p

]

,

R7−p
p =

gsNc(2πls)
7−p

(7 − p)V8−p
, eφ = gs

(

Rp

u

)

(7−p)(3−p)
4

, fT (u; p) = 1 −
(

uT

u

)7−p

.

The energy Ep can be evaluated,

Ep(uB ;u0) =
NcuT

2πl2s
E(p)

deconf , E(p)
deconf(x;x0) =

1

7 − p
x
√

1 − xp−7 + (x0 − x) ,

x :=
uB

uT
, x0 :=

u0

uT
, 1 ≤ x ≤ x0 .

Figure 12 implies that only E6(uB) is a monotonically increasing function.
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